A Look at Saturated Graphs

Ron Gould

Emory Emeritus College

Supported by the Heilbrun Distinguished Emertius Fellowship

November 4, 2018

Saturation

Definition

Given a graph H, a graph G of order n is said to be H-saturated provided G contains no copy of H, but the addition of any edge from the complement of G creates a copy of H. That is, given $e \in \bar{G}$, then $G+e$ contains a copy of H.

Extremal vs Saturation Numbers

Definition

The maximum number of edges in an H-saturated graph of order n is called the extremal number (or the Turan number) for H, and is denoted as ex (n, H).

Definition

The minimum size of an H-saturated graph of order n is called the saturation number and is denoted as $\operatorname{sat}(n, H)$.

Fundamental Questions on Saturated Graphs

1. Given a graph G, what is $\operatorname{ex}(n, G)$?
2. Given a graph G, what is $\operatorname{sat}(n, G)$?
3. What sizes of G-saturated graphs are possible between the saturation number and extremal number? This set of values is called the saturation spectrum of G.
4. When are all values possible?
5. What general theory can we build for $\operatorname{ex}(n, G)$ or $\operatorname{sat}(n, G)$?

Classic extremal results

Turan (1941) provided the extremal number for complete graphs:

Theorem

Among graphs of order n which do not contain K_{t}, there exists exactly one with the maximum number of edges, the complete, balanced, $(t-1)$-partite graph.

For triangles, this is the balanced comple bipartite graph, thus $\operatorname{ext}\left(n, K_{3}\right)=\lfloor n / 2\rfloor\lceil n / 2\rceil$. (Determined by W. Mantel in 1906.)

The Erdős-Stone Theorem, 1946

Established the magnitude of the extremal number for all graphs with chromatic number at least 3 .

Theorem

$$
\lim _{n \rightarrow \infty} \frac{\operatorname{ex}(n, G)}{n^{2}}=\frac{1}{2}\left(1-\frac{1}{\chi(G)-1}\right)
$$

Saturation for Complete Graphs

In 1964 Erdős, Hajnal and Moon determined that:
Theorem

$$
\operatorname{sat}\left(n, K_{t}\right)=(t-2)(n-1)-\binom{t-2}{2}
$$

This arises from the graph $K_{t-2}+\bar{K}_{n-t+2}$, where + denotes join.

Saturation for Complete Graphs

In 1964 Erdős, Hajnal and Moon determined that:

Theorem

$$
\operatorname{sat}\left(n, K_{t}\right)=(t-2)(n-1)-\binom{t-2}{2} .
$$

This arises from the graph $K_{t-2}+\bar{K}_{n-t+2}$, where + denotes join.

Saturation for Complete Graphs

In 1964 Erdős, Hajnal and Moon determined that:

Theorem

$$
\operatorname{sat}\left(n, K_{t}\right)=(t-2)(n-1)-\binom{t-2}{2} .
$$

This arises from the graph $K_{t-2}+\bar{K}_{n-t+2}$, where + denotes join.

This means that for a triangle, $\operatorname{sat}\left(n, K_{3}\right)=n-1$.

Useful properties of extremal numbers

Let \mathbf{F} be a family of graphs. Then $e x(n, \mathbf{F})$ satisfies:

1. $e x(n, \mathbf{F}) \leq e x(n+1, \mathbf{F})$.
2. If $\mathbf{F}_{\mathbf{1}} \subset \mathbf{F}$ then $\operatorname{ex}\left(n, \mathbf{F}_{\mathbf{1}}\right) \leq e x(n, \mathbf{F})$.
3. If $H \subseteq G$, then $\operatorname{ex}(n, H) \leq e x(n, G)$.

However, these rules do not hold in general for saturation numbers. Example of 3 . Consider K_{4} and a supergraph H obtained by attaching an additional edge to K_{4}. We know that $\operatorname{sat}\left(n, K_{4}\right)=2 n-3$. But for H we have:

Thus, $\operatorname{sat}(n, H) \leq 3 n / 2$.

Slight Aside

Thus we have seen that the extremal number for triangles is $O\left(n^{2}\right)$ while the saturation number is $O(n)$.

This is no accident!
Kászonyi and Tuza provided a very general upper bound on saturation numbers and used it to show the following:

Theorem

For every graph F there exists a constant c such that

$$
\operatorname{sat}(n, F)<c n
$$

Back to Cliques: K_{3}

In 1995 Barefoot, Casey, Fisher, Fraughnaugh and Harary, showed the following:

Theorem

For $n \geq 5$, there exists a K_{3}-saturated graph of order n with m edges if and only if it is complete bipartite or

$$
2 n-5 \leq m \leq\left\lfloor\frac{(n-1)^{2}}{4}\right\rfloor+1
$$

Note: A gap at the bottom, between $n-1$ and $2 n-5$. This is a result of a combination of connectivity and the fact that triangle saturated graphs have diameter two. It is then easy to show the gap at the bottom exists. At the top, extremal theory and convexity suffice.

This is a result of a combination of connectivity and the fact that triangle saturated graphs have diameter two. At the top, extremal theory and convexity suffice.

Theorem

(Barefoot, et al) Every 2-connected graph of order n and diameter two has at least $2 n-5$ edges.

Note

This result works well for triangles, $K_{4}-e$ and other graphs where the saturation graph must have diameter 2.

Larger cliques: $K_{t}, t \geq 4$

With K. Amin, J. Faudree and E. Sidorowicz (2013) we were able to generalize this result for all $t \geq 3$.

Theorem

For $n \geq 3 t+4$ and $t \geq 3$, there is a K_{t}-saturated graph G of order n with m edges if, and only if, G is complete $(t-1)$-partite or

$$
(t-1)(n-t / 2)-2 \leq m \leq\left\lfloor\frac{(t-2) n^{2}-2 n+(t-2)}{2(t-1)}\right\rfloor+1 .
$$

Note, same sort of gaps exist. Also note this reduces to the Barefoot et al result when $t=3$.

Saturation number for paths

Kászonyi and Tuza, 1986:

Theorem

1. For $n \geq 3$, $\operatorname{sat}\left(n, P_{3}\right)=\lfloor n / 2\rfloor$.
2. For $n \geq 4$,

$$
\operatorname{sat}\left(n, P_{4}\right)= \begin{cases}n / 2 & n \text { even } \\ (n+3) / 2 & n \text { odd }\end{cases}
$$

3. For $n \geq 5$, $\operatorname{sat}\left(n, P_{5}\right)=\left\lceil\frac{5 n-4}{6}\right\rceil$.
4. Let

$$
a_{k}=\left\{\begin{array}{lll}
3 \cdot 2^{t-1}-2 & \text { if } & k=2 t \\
4 \cdot 2^{t-1}-2 & \text { if } & k=2 t+1
\end{array}\right.
$$

then if $n \geq a_{k}$ and $k \geq 6$, $\operatorname{sat}\left(n, P_{k}\right)=n-\left\lfloor\frac{n}{a_{k}}\right\rfloor$.

$\operatorname{ext}\left(\mathrm{n}, P_{k}\right)$ - by several including Faudree and Schelp

Theorem

For all $n \geq 3$,
1.

$$
\operatorname{ext}\left(n, P_{4}\right)=\left\{\begin{array}{l}
n \text { if } n \equiv 0(\bmod 3) \\
n-1 \text { if } n \equiv 1,2(\bmod 3)
\end{array}\right.
$$

2.

$$
\operatorname{ext}\left(n, P_{5}\right)=\left\{\begin{array}{l}
3 n / 2 \text { if } n \equiv 0(\bmod 4) \\
3 n / 2-2, \text { if } n \equiv 2(\bmod 4) \\
3(n-1) / 2, \text { if } n \equiv 1,3(\bmod 4)
\end{array}\right.
$$

3.

$$
\operatorname{ext}\left(n, P_{6}\right)=\left\{\begin{array}{l}
2 n, \text { if } n \equiv 1(\bmod 5) \\
2 n-2, \text { if } n \equiv 1,4(\bmod 5) \\
2 n-3, \text { if } n \equiv 2,3(\bmod 5)
\end{array}\right.
$$

Small Path Sat Spectrum

Work with W. Tang, E. Wei, C.Q. Zhang (2012).
If we consider P_{3} it is simple to see that:

Theorem

$$
\operatorname{sat}\left(n, P_{3}\right)=\operatorname{ex}\left(n, P_{3}\right)=\lfloor n / 2\rfloor .
$$

There is a simple procedure for evolving a P_{4}-saturated graph from the saturation number to the extremal number, one edge at a time. Thus, the spectrum for P_{4} is complete.
$\mathrm{n}=2 \mathrm{k}$

$$
\mathrm{m}=\mathrm{k}
$$

etc.

Do any other graphs have a continuous spectrum?

With J. Faudree, R. Faudree, M. Jacobson and B. Thomas (2009):

Theorem

If $t \geq 3$ and $n \geq t+1$, then the spectrum of the star $K_{1, t}$ is continuous from $\operatorname{sat}\left(n, K_{1, t}\right)$ to ex $\left(n, K_{1, t}\right)$.

For completness

Kászonyi and Tuza:

Theorem

$$
\operatorname{sat}\left(n, K_{1, t}\right)= \begin{cases}\binom{t}{2}+\binom{n-t}{2} & \text { if } t+1 \leq n \leq t+t / 2 \\ \left\lceil\frac{t-1}{2} n\right\rceil-t^{2} / 8 & \text { if } t+1 / 2 \leq n\end{cases}
$$

Folklore??? Obvious!

Theorem

ex $\left(n, K_{1, t}\right)=\left\lfloor\frac{t-1}{2} n\right\rfloor$. That is, a graph that is $t-1$-regular or nearly regular.

P_{5} with Tang, Wei and Zhang

Here things get a little bit more complicated.

Theorem

Let $n \geq 5$ and $\operatorname{sat}\left(n, P_{5}\right) \leq m \leq \operatorname{ext}\left(n, P_{5}\right)$ be integers. Then there exists an $(n, m) P_{5}$-saturated graph if and only if $n \equiv 1,2(\bmod 4)$, or

$$
m \neq\left\{\begin{array}{l}
\frac{3 n-5}{2} \text { if } n \equiv 3(\bmod 4) \\
\frac{3 n}{2}-j, j=1,2, \text { or } 3 \text { if } n \equiv 0(\bmod 4)
\end{array}\right.
$$

For P_{6} there are 5 cases depending on the value of $n(\bmod 5)$.
There are gaps in the spectrum for each case. We will see more on this later.

Saturation for cliques minus an edge

The extremal number for $K_{4}-e$ is achieved by the complete bipartite graph.
$\operatorname{sat}\left(n, K_{4}-e\right)=\left\lfloor\frac{3(n-1)}{2}\right\rfloor$, and is achieved by:

Saturation spectrum for $K_{4}-e$

With Jessica Fuller we showed:

Theorem

If G is a $K_{4}-e$ saturated graph on n vertices, then either G is a complete bipartite graph, a 3-partite graph (like the saturation graph of the previous frame), or has size in the interval

$$
\left[2 n-4,\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil-n+6\right]
$$

Here the gap between the saturation number and $2 n-4$ happens for reasons similar to that for triangles.

A look at the proof

Case: Suppose $4 n-18 \leq m \leq\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil-n+5$.
Here $|A|=n-|B|-|C|-5,|B|=b \geq 2,|C|=c \geq 2,|D|=2$ and $|E|=3$.

Then $m=(n-c)(c+2)-5 c+b-4$. So as b increases by 1 , with c fixed, then m increases by 1 .

A look at the proof

Case: Suppose $4 n-18 \leq m \leq\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil-n+5$.
Here $|A|=n-|B|-|C|-5,|B|=b \geq 2,|C|=c \geq 2,|D|=2$ and $|E|=3$.

Then $m=(n-c)(c+2)-5 c+b-4$. So as b increases by 1 , with c fixed, then m increases by 1 .

A look at the proof

Case: Suppose $4 n-18 \leq m \leq\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil-n+5$.
Here $|A|=n-|B|-|C|-5,|B|=b \geq 2,|C|=c \geq 2,|D|=2$ and $|E|=3$.

Then $m=(n-c)(c+2)-5 c+b-4$. So as b increases by 1 , with c fixed, then m increases by 1 .

Larger Cliques Minus an Edge

It is straight-forward to extend the $K_{4}-e$ interval to larger cliques:

Theorem

There are $K_{t}-e$ saturated graphs in the interval
$\left[(t-2) n-\binom{t-1}{2}-1,\left\lfloor\frac{n-t}{2}\right\rfloor\left\lceil\frac{n-t}{2}\right\rceil+(t-3) n-\binom{t-2}{2}-1\right]$.
Also, there are $\left(K_{t}-e\right)$-saturated graphs for sporadic values of m in

$$
\begin{aligned}
{\left[\left\lfloor\frac{n-t}{2}\right\rfloor\left\lceil\frac{n-t}{2}\right\rceil\right.} & \left.+(t-3) n-\binom{t-2}{2}+4,\left\lfloor\frac{n-t}{2}\right\rfloor\left\lceil\frac{n-t}{2}\right\rceil\right] \\
& \left.+(t-2) n-\binom{t-1}{2}-1 .\right]
\end{aligned}
$$

Saturation for Fans

Definition

The fan F_{t} is the graph consisting of t edge-disjoint triangles that intersect at a single vertex v.

Note: The fan is sometimes called a friendship graph.

Extremal Number for the Fan F_{k}

With Erdős, Furedi and Gunderson (1995) we determined the extremal number for fans F_{t}.

Theorem

For every $t \geq 1$, and for every $n \geq 50 t^{2}$, if a graph G on n vertices has more than

$$
\left\lfloor\frac{n^{2}}{4}\right\rfloor+ \begin{cases}t^{2}-t & \text { if } t \text { is odd } \\ t^{2}-\frac{3}{2} t & \text { if } t \text { is even }\end{cases}
$$

edges, then G contains a copy of the t-fan, F_{t}. Furthermore, the number of edges is best possible.

Saturation Spectrum for fans

With J. Fuller we showed the following:

Theorem

For $t \geq 2$, and $n \geq 3 t-1, \operatorname{sat}\left(n, F_{t}\right)=n+3 t-4$.

Theorem

There exists an F_{2}-saturated graph G on $n \geq 7$ vertices and m edges where $m=n+2$, or $2 n-4 \leq m \leq\left\lceil\frac{n}{2}\right\rceil\left\lfloor\frac{n}{2}\right\rfloor-\left\lfloor\frac{n}{2}\right\rfloor+2$, or m is the size of a complete bipartite graph with one additional edge.

We also showed:

Theorem

There exists an F_{3}-saturated graph G of order n with m edges for $m=n+5$, or $2 n+2 \leq m \leq\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil-\left\lfloor\frac{n}{2}\right\rfloor+5$, or m equals the size of a complete bipartite graph with six added edges. Further, the only unknown possible sizes are from $2 n-5$ to $2 n+1$.

F_{4} gets even more interesting

Theorem

There exists an F_{4}-saturated graph G on n vertices and m edges for $m=n+8$, or $3 n+2 \leq m \leq\left\lceil\frac{n}{2}\right\rceil\left\lfloor\frac{n}{2}\right\rfloor-\left\lfloor\frac{n}{2}\right\rfloor+10$ except for $4 n-8$, or G is a complete bipartite graph with the proper 10 additional edges.

Saturation for unions of cliques

With R. Faudree, M. Ferrara, and M. Jacobson (2009):
First $t K_{p}$.

Theorem

Let $t \geq 1, p \geq 3$ and $n \geq p(p+1) t-p^{2}+2 p-6$ be integers. Then

$$
\operatorname{sat}\left(t K_{p}, n\right)=(t-1)\binom{p+1}{2}+\binom{p-2}{2}+(p-2)(n-p+2)
$$

$K_{p} \cup K_{q}$

Theorem

Let $2 \leq p \leq q$ and $n \geq q(q+1)+3(p-2)$ be integers. Then

$$
\operatorname{sat}\left(K_{p} \cup K_{q}, n\right)=(p-2)(n-p+2)+\binom{p-2}{2}+\binom{q+1}{2}
$$

Proof Idea

Proof Idea

Generalized Fans

Definition

Let the graph comprised of t copies of K_{p} intersecting in a common K_{ℓ} be called a generalized fan and be denoted $F_{p, \ell}$

with Faudree, Ferrara, and Jacobson

Theorem

Let $p \geq 3, t \geq 2$ and $p-2 \geq \ell \geq 1$ be integers. Then, for sufficiently large n,
$\operatorname{sat}\left(F_{p, \ell}, n\right)=(p-2)(n-p+2)+\binom{p-2}{2}+(t-1)\binom{p-\ell+1}{2}$.

with G. Chen, F. Pfender and B. Wei 2003

Definition

A graph on $(r-1) k+1$ vertices consisting of k cliques each with r vertices, which intersect in exactly one common vertex, is called a (k, r) - fan.

Theorem

For every $k \geq 1$, and for every $n \geq 16 k^{3} r^{8}$, if a graph G on n vertices has more than

$$
e x\left(n, K_{r}\right)+ \begin{cases}k^{2}-k & \text { if } k \text { is odd } \\ k^{2}-\frac{3}{2} k & \text { if } t \text { is even }\end{cases}
$$

edges, then G contains a copy of the (k, r)-fan. Furthermore, the number of edges is best possible.

To see the last result is best possible consider:
For odd k take the Turan graph and embed two vertex disjoint copies of K_{k} in one partite set.

For even k take the Turan graph and embed a graph with $2 k-1$ vertices and $k^{2}-(3 / 2) k$ edges with max degree $k-1$ in one partite set.

Gaps: work with P. Horn,, M. Jacobson and B. Thomas

Definition

A tree T of order $\ell, T \neq K_{1, \ell-1}$, having a vertex that is adjacent to at least $\left\lfloor\frac{\ell}{2}\right\rfloor$ leaves is called a scrub-grass tree.

Theorem

Let T be a path or scrub-grass tree on $\ell \geq 6$ vertices and $n=|G| \equiv 0 \bmod (\ell-1)$ and m be an integer such that $1 \leq m \leq\left\lfloor\frac{\ell-2}{2}\right\rfloor-1$. There is no graph of size $\frac{n}{\ell-1}\binom{(-1}{2}-m$ in the spectrum of T. Hence, there is a gap in the spectrum.

Related ideas

Definition

A graph F is weakly G-saturated if F does not contain a copy of G, but there is an ordering of the missing edges of G so that if they are added one at a time, each edge creates a new copy of F. The minimum size of a weakly F-saturated graph G of order n is denoted wsat (N, F).

Question:

Question
For which graphs G is $\operatorname{sat}(n, G)=\operatorname{wsat}(n, G)$?
Bollobás (1967) showed the following:

Theorem

$$
w s a t\left(n, K_{p}\right)=\operatorname{sat}\left(n, K_{p}\right)
$$

With R. Faudree and M. Jacobson, 2013

If F is a graph of order p and size q :

Theorem

$$
\frac{\delta n}{2}-\frac{n}{\delta+1} \leq \operatorname{wsat}(n, F) \leq(\delta-1) n+(p-1) \frac{p-2 \delta}{2}
$$

wsat for Trees

We further showed that for any tree T_{p} on p vertices:
Theorem

$$
p-2 \leq w \operatorname{wat}\left(n, T_{p}\right) \leq\binom{ p-1}{2}
$$

More on trees

For a labeled tree T_{p}

Theorem

$$
\lim _{n \rightarrow \infty} P\left(\operatorname{wsat}\left(n, T_{p}\right)\right)=p-2 \rightarrow 1
$$

Proof uses Cayley tree formula.

weak sat for multiple copies

with R. Faudree (2014):

Theorem

$$
w \operatorname{sat}\left(n, k K_{t}\right)=(t-2) n+k-\left(t^{2}-3 t+4\right) / 2
$$

Theorem

$$
\text { wsat }\left(n, k C_{t}\right)= \begin{cases}n+k-2 & \text { if } t \text { is odd } \\ n+k-1 & \text { if } t \text { is even. }\end{cases}
$$

